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Density Functional Theory and Reaction Thermodynamics: Assessment of new
Molecules for the Liquid Organic Hydrogen Storage Technology
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PURPOSE OF THE ABSTRACT

As global warming is forcing our societies out of fossil fuels, new carbon-free energy vectors such as dihydrogen
(H2) are developed, and new forms of storage must follow accordingly. Indeed, despite exhibiting the highest
energy density per unit of mass of all chemical fuels, H2 is the lightest molecule in the Universe, challenging our
current storage technologies.1,2

Liquid organic hydrides also known as Liquid Organic Hydrogen Carrier (LOHC) are promising as they promote
the use of an easily transportable (liquid) recyclable intermediate to store vast amounts of H2 (TWh of energy) in
a condensed and controllable fashion (chemical binding) over a long period of time (year).3 H2 can be released at
will through a dehydrogenation of the H2-rich intermediate, yielding the H2-poor intermediate, which can be used
to close the cycle. Whilst several couples such as Methylcyclohexane/Toluene,
18H-Dibenzyltoluene/Dibenzyltoluene or 12H-N-Ethylcarbazole/N-Ethylcarbazole are already well studied in the
literature, the determination of other suitable couples is still under investigation.4?6 Indeed, the dehydrogenation
energy cost of the state-of-the-art LOHC couples as well as their synthesis from non-renewable feedstock are
issues left to be tackled.7

Herein we use Density Functional Theory (DFT) to describe the energy levels of new potential LOHC molecules
and the reaction thermodynamics of the hydrogenation/dehydrogenation. In this framework, we assess various
possible intermediates through their thermodynamic properties, characterizing the enthalpy as the energy needed
for their dehydrogenation reaction. The appropriate methodology is benchmarked for a class of compounds
containing C, H, O and N atoms by computing the reaction energy for known LOHC couples and new couples are
modelled thereafter.

A new potential carrier is proposed, with properties on par with the state-of-the-art LOHC couples with advantages
on the eco/toxicological safety and potential production by renewable feedstock.8 Preliminary results show great
promises for the heterogeneously catalysed hydrogenation and features different side reactions during the
dehydrogenation depending on the nature of the catalyst. The mechanism and limitations of the side reactions are
then rationalized. The comparison between DFT-modelling and experiment of the reaction enthalpy is also
addressed to appraise its value for the development of the LOHC technology.
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